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Fourier’s law

Fourier’s law of heat conduction

J = −κ∇T (x)

κ – thermal conductivity of the material.

Using Fourier’s law and the energy conservation equation

∂ε

∂t
+∇J = 0

gives the heat DIFFUSION equation:

∂T
∂t

=
κ

c
∇2T

Thus Fourier’s law implies diffusive heat transfer.
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Theories of heat transport

Kinetic theory

Peierl’s-Boltzmann theory

Green-Kubo linear response theory

Landauer theory – This is an open systems approach especially useful for mesoscopic
systems.

Nonequilibrium Green’s function formalism

Langevin equations and Green’s function formalism

(RRI) July 2010 8 / 51



Proving Fourier’s law

Proving Fourier’s law from first principles (Newton’s equations of motion) is a
difficult open problem in theoretical physics.

Review article:
Fourier’s law: A challenge for theorists
(Bonetto, Rey-Bellet, Lebowitz) (2000).

It seems there is no problem in modern physics for which there are on record as many false starts,
and as many theories which overlook some essential feature , as in the problem of the thermal
conductivity of nonconducting crystals.
R. Peierls (1961)

(RRI) July 2010 6 / 51



Results so far

All the standard theories of transport involve uncontrolled
approximations and do not provide a “proof” of Fourier’s law.

Direct studies (simulations and exact results) in one and two dimensional
systems find that Fourier’s law is in fact not valid. The thermal conductivity is
not an intrinsic material property.

For anharmonic systems without disorder , κ diverges with system size L as:

κ ∼ Lα 1D
∼ Lα′ , log L 2D
∼ L0 3D

A.D, Advances in Physics, vol. 57 (2008).
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Lack of Fourier Law in Low Dimension 

 Harmonic model: 
 

RLL model (1D Langevin baths at the ends) 

 

 

 

 

 With disorder: (1D) 

 

 

 With anharmonicity: 

 

 Rieder, Lebowitz, Lieb, J. Math. Phys. 8, 1073 (1967)  𝐻 =  
𝑝𝑙

2

2𝑚

𝑁

𝑙=1

+  
1

2
𝑘 𝑥𝑙 − 𝑥𝑙+1

2

𝑁−1

𝑙=1

 

Not intensive !!! 

free boundaries:    𝛼 = 𝟏/𝟐 

fixed boundaries:  𝛼 = −𝟏/𝟐 
𝜅 =

𝑗

Δ𝑇/𝑁
~𝑁𝛼 

 Dhar, Phys. Rev. Lett. 86, 5882 (2001) 

 Roy and Dhar, Phys. Rev. E 78, 051112 (2008) 

𝜶 = 𝟏         Ballistic 

𝟎 < 𝜶 < 𝟏 Superdiffusive 

𝜶 < 𝟎          Subdiffusive 

𝜅 =
𝑗

Δ𝑇/𝑁
~𝑁𝛼         for 1D systems 

𝜅 =
𝑗

Δ𝑇/𝑁
~ log𝑁      for 2D systems 

 Lepri, Phys. Rev. Lett. 78, 1896 (1997) 

 Yang et al, Phys. Rev. E 74, 062101 (2006) 
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Normal Heat Transport 

Fourier Law 
 

 

 

 

 

 

𝒋 = −𝜅𝛁𝑇 

 

   𝒋 : heat flux through an unit   

surface  per unit time 

𝛁𝑇 : gradient of temperature 

  𝜅 : thermal conductivity  

an intensive property 

 

  
4 

Heat (Diffusion) equation 

 
 
 
 

𝜕𝜖

𝜕𝑡
=

𝜅

𝑐
 ∆𝜖 = 𝐷𝐸∆𝜖  

 𝜖  :  local energy density 

 𝑐  :  volumetric specific heat 

𝐷𝐸:  thermal diffusivity 

 
𝜕𝜖

𝜕𝑡
+ 𝛻 ⋅ 𝒋 = 0        𝜖 = 𝑐𝑇 

 

𝑡 



Normal Diffusion 

Initial condition:   

𝜖 𝑥, 0 = 𝛿 𝑥  

 

Solution (Green function): 

Φ 𝑥, 𝑡 =
1

4𝜋𝐷𝐸𝑡
exp −

𝑥2

4𝐷𝐸𝑡
 

General initial condition:  

𝜖 𝑥, 0 = 𝜂 𝑥  

(𝜂 𝑥  , not necessarily positive) 

Solution: 

𝜖 𝑥, 𝑡 =  Φ 𝑥 − 𝑥′, 𝑡 𝜂 𝑥′ 𝑑𝑥′ 

𝜕𝜖

𝜕𝑡
= 𝐷𝐸  ∆𝜖 ;   𝑥 ∈ 𝐑;  𝑡 ∈ (0, ∞) 

 

Heat equation 

⟨𝑥2(𝑡)⟩ =
 𝑥2𝜖 𝑥, 𝑡 𝑑𝑥

 𝜖 𝑥, 𝑡 𝑑𝑥
= 2𝐷𝑡 +

 𝑥2𝜂 𝑥 𝑑𝑥

 𝜂 𝑥 𝑑𝑥
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Low Dimensional Materials 

 
 

 

 

 

 

 

 

 Liu and Yang, Phys. Rev. B 86, 104307 (2012) 

Simulation: Single extended 

polymer chains 

 Chang et al, Phys. Rev. Lett. 101, 075903 (2008) 

Experiment: Normalized thermal resistance vs. 

normalized sample length for CNT and BNNT 
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FIG. 3. K vs L relations 
for nine different CNTs. 
Both measured K,·s (open 

symbols) and con·ected K's 
(solid symbob. after incor
porating radiation heat loss 
from the surface of CNTs) 
are �hown for each �ample. 
The mea�ured K111 ·� and 
corrected K"s are almost 
identical for L < I 00 J.lm. 
For the longest CNT inves
tigated (L = 1.039 mm). 
the measured K, and the 
corrected K reach 8640 and 
13300W /mK. respectively. 
The fits (by parametriLing 
K � L") to the con·ected 
K's and measured K,, ·s arc 
shown by solid curves and 
dashed curves. respectively . 
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have L1−α ≫ Ks=Kc in Eq. (4) and the effect of contact
thermal resistance vanishes when L ≫ 1 μm. Additionally,
the effect of contact thermal resistance should be limited;
for example, Ks=Kc > 5 would indicate that the intrinsic κ
of a 1 μm-long CNT is larger than 18 000 W=mK, violat-
ing quantum mechanical constraints for a CNT [28,29].
Further analyses using Eq. (4) suggest that 0.17<α<0.43
and Ks=Kc < 0.3 yield good fits to the experimental data
[26]. Figure 4 also shows a controlled experiment on a SiNx
beam displaying the expected diffusive thermal conduction,
demonstrating the validities of our measurements and
analyses. Therefore, we conclude that the experimentally
observed divergent behavior of κ originates from the
intrinsic properties of the ultralong CNTs, but not from
artifacts of contact thermal resistance.
Because naturally abundant ethanol vapor was used as

the synthetic source, isotopic impurities (98.9% 12C and
1.1% 13C) are expected in the investigated CNTs. In
addition, impurities and defects are unavoidable for the
ultralong CNTs. Furthermore, TEM images reveal a thin
layer (∼2 nm) of amorphous carbon covering some parts of
the CNTs [26]. Surprisingly, the pronounced power-law
divergence of κ emerges regardless of these structural
imperfections and external perturbations. The result is
consistent with 1D disordered models that show robust
anomalous thermal conduction phenomena against defects
or disorders [5]. But it disagrees with the prediction that the
divergent behavior of κ would disappear when defects are
introduced in CNTs [9,16]. We thus demonstrate that the
divergence of κ persists for much longer distances than
theoretically anticipated [9,10,16]. Our results also resolve
the decade-long debate of whether the κ of a CNT would

continue to diverge or saturate for L > 1 μm [11–17]. The
finding indicates that the wave properties of heat can be
transmitted for much longer distances than previously
thought, and it highlights the important contributions of
long-wavelength phonons in low-dimensional systems.
Unlike electrical conductivity of materials that can vary by

more than 27 orders of magnitude from insulators to metals,

FIG. 3. κ vs L relations
for nine different CNTs.
Both measured κm’s (open
symbols) and corrected κ’s
(solid symbols, after incor-
porating radiation heat loss
from the surface of CNTs)
are shown for each sample.
The measured κm’s and
corrected κ’s are almost
identical for L < 100 μm.
For the longest CNT inves-
tigated (L ¼ 1.039 mm),
the measured κm and the
corrected κ reach 8640 and
13300W=mK, respectively.
The fits (by parametrizing
κ ∼ Lα) to the corrected
κ’s and measured κm’s are
shown by solid curves and
dashed curves, respectively.

FIG. 4. Normalized κ vs L for the investigated samples. Here
the corrected κ’s (solid symbols) and measured κm’s (open
symbols) are normalized, respectively, by those of each sample’s
shortest L. The effects of contact thermal resistance from small
(Ks=Kc ¼ 0.2) to large (Ks=Kc ¼ 5) are calculated using Eq. (4)
(with α ¼ 0), demonstrating that the observed divergent of κ or
κm cannot be attributed to contact thermal resistances adding to a
diffusive thermal conductor. A controlled experiment on a SiNx
beam shows the expected normal thermal conduction.
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• Analytical results in anomalous heat diffusion are only available for 
CTRW models

• General theory for heat diffusion, especially in solids, is unknown

The general features of (anomalous) heat diffusion beyond the 
phenomenological Fourier law and  exists there a generalized 
heat equation?

The fundamental connection between (anomalous) heat 
diffusion and (anomalous) heat conduction.

Open Problems
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Energy diffusion 

  1D homogeneous system  𝐻 =  ℎ 𝑥 𝑑𝑥 

 equilibrium for system 𝐻:  𝑓𝑒𝑞 = 𝑒−𝛽𝑇𝐻/𝑍 

1. nonequilibrium initial condition at 𝑡 = 0; 

𝑓𝑛𝑒𝑞 𝑡 = 0 =
1

𝑍′
𝑒−𝛽𝑇 𝐻+𝐻′

 

𝐻′ = − 𝜂 𝑥 ℎ 𝑥 𝑑𝑥 , 𝑍′ =  𝑒−𝛽𝑇 𝐻+𝐻′
𝑑Γ 

𝜂(𝑥) depicts the initial energy distribution. 

13 

𝑡 0 −∞ 

ℎ(𝑥) ℎ 𝑥 → ℎ 𝑥 − 𝜂 𝑥 ℎ(𝑥) 

𝑓𝑛𝑒𝑞 𝑡 = 0 =
1

𝑍′
𝑒−𝛽𝑇 𝐻+𝐻′

 

ℎ 𝑥 =  𝛿 𝑥 − 𝑥𝑛 ℎ𝑛  



Excess Energy Density 

 

 

2. Evolve according to Liouvillian dynamics 

𝜕𝑡𝑓𝑛𝑒𝑞 𝑡 = 𝐿𝑓𝑛𝑒𝑞 = 𝐻, 𝑓𝑛𝑒𝑞    (𝒕 > 𝟎) 

𝑓𝑛𝑒𝑞:  phase space density 

 

3. Calculate the excess energy density in space 

𝛿 ℎ 𝑥, 𝑡 𝑛𝑒𝑞 = ℎ 𝑥, 𝑡 𝑛𝑒𝑞 − ℎ 𝑥 𝑒𝑞  

=  ℎ 𝑥 𝑓𝑛𝑒𝑞(𝑡) 𝑑Γ −  ℎ 𝑥 𝑓𝑒𝑞 𝑑Γ 

 
 

14 



Preparation of Initial Condition

 The initial condition can be prepared by applying at infinite past the 
perturbation , with the perturbation 
suddenly switched off at .

 If a concept of local temperature exist, it enters the result via the 
preparation of initial condition

In such a case, the Hamiltonian density couples formally to the 
conjugated thermodynamic affinity at 

 Note: the concept of a time-dependent local equilibrium temperature 
is NOT needed in the diffusion process.

15



Linear Response Result

 We calculate  to the first order of 




ᇱ


ᇱ ᇱ




ᇱ ᇱ ᇱ

 The conservation of total excess energy
ܧߜ ݐ ൌ නߜ ݄ ,ݔ ݐ ݀ݔ ൌ ݐݏ݊ܿ ൌ ܿܶනߟ ݔ ݔ݀

 The normalized excess energy density (NOT a probability density)
ாߩ ,ݔ ݐ ൌ

ߜ ݄ ,ݔ ݐ 

ܧߜ ݐ ൌ
1
ܰ
නܥ ݔ െ ,ᇱݔ ݐ ߟ ᇱݔ ′ݔ݀

Normalization constant ܰ ൌ ݇ܶଶܿ  ߟ ݔ ݔ݀

For heat equation ߳ ,ݔ ݐ ൌ Φ ݔ െ ,ᇱݔ ݐ ߟ ᇱݔ ′ݔ݀

16

ா can be negative!



 Define the mean square deviation of energy diffusion as 

Δ𝑥2 𝑡 𝐸 =  𝑥 − 𝑥 𝐸
2𝜌𝐸 𝑥, 𝑡 𝑑𝑥 = 𝑥2(𝑡) 𝐸 − 𝑥 𝐸

2 . 

𝑥 𝐸 =  𝑥𝜌𝐸 𝑥, 𝑡 𝑑𝑥  is a constant for homogeneous systems 

 

 

The Mean Square Deviation (MSD) 

 It is the variance for the excess 

energy distribution rather than the 

𝑥 𝑡 − 𝑥 𝑡0
2  as for particle 

diffusion 

 Δ𝑥2 𝑡 𝐸 can be negative 

For FPU model 

17 



The Evolution of the MSD 

Acceleration: 

𝑑2 Δ𝑥2 𝑡 𝐸

𝑑𝑡2
=

1

𝑁
 𝑥2

𝜕2𝐶ℎℎ 𝑥 − 𝑥′, 𝑡

𝜕𝑡2
𝜂 𝑥′ 𝑑𝑥𝑑𝑥′ 

=
1

𝑁
 𝑥2

𝜕2𝐶𝑗𝑗 𝑥 − 𝑥′, 𝑡

𝜕𝑥2
𝜂 𝑥′ 𝑑𝑥𝑑𝑥′ 

=
2𝐶𝐽𝐽 𝑡

𝑘𝐵𝑇2𝑐
 

 

𝜕2𝐶ℎℎ 𝑥, 𝑡

𝜕𝑡2
=

𝜕2𝐶𝑗𝑗 𝑥, 𝑡

𝜕𝑥2
 

Heat flux auto-correlation function: 

 

Volumetric heat capacity: 𝑐 

 

𝐶𝐽𝐽 𝑡 = lim
𝐿→∞

1

𝐿
𝐽𝐿 𝑡 𝐽𝐿 0 𝑒𝑞 =  𝐶𝑗𝑗 𝑥, 𝑡 𝑑𝑥 

 

Initial conditions: 

Δ𝑥2 𝑡 = 0 𝐸  depends on initial energy profile 𝜂 𝑥 ;       
𝑑 Δ𝑥2 𝑡

𝐸

𝑑𝑡
 
𝑡=0

= 0 
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Energy Diffusion

2

Time evolution of the nonequilibrium energy density for a 
manifest near equilibrium energy diffusion dynamics
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Numerical Validation

1

3 ~--------~--------~--------~--------~--------~ 

2.5 

0.1 
(a) 

,. 
(b) 

I · 
0.04 - I ·-· t= O 

0.05 I l I -
,..--.... - I -. t=30 ·-+-.) I -

N 
~ 

~ 2 ---~ 

~ 0 - I H 0.02 - t=70 ·-· I -

II 
- I -- 1=30 

- ~ 

- 0. 1 • 0 - t=70 --,---.. - 200 - 100 0 100 200 - 200 - 1 00 0 100 

~ 1i .5 X X 
N 
~ 

<:] 
----- 1 
N 
""t3 

0.5 0 

20 JJ ( t ) / k
8

T

2

c ~~~~~~~~~~'l'le~~J 
d2 (!:l x·2 (t))E/ dt2 linear response (a.) 

D d2 (.6. x 2 ( t)) E/ dt2 full nonequilibrium (b) 
0 

0 .20 40 60 80 100 
t 



Discussion

The Assumptions used in the derivation:

Ergodicity

 No nonstationary (i.e. aging) phenomena for long time correlations.
 Not applicable to all anomalous subdiffusive and superdiffusive 

energy diffusion processes that undergo aging, e.g. in many CTRW 
models. (however, those models lack a microscopic Hamiltonian 
basis)

 Applicable to ergodic anomalous diffusion dynamics stemming from 
a generalized Langevin equation, driving by fractional Brownian 
motion
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 Green-Kubo formula 

 

 The Helfand relation for normal heat conduction (equivalent to Green-Kubo) 

𝜅 = lim
𝑡→∞

1

2𝑘𝐵𝑇2𝑡
lim
𝐿→∞

𝐺 𝑡 − 𝐺 0 2
𝑒𝑞

𝐿
≡ lim

𝑡→∞

Δ𝒢2 𝑡 𝑒𝑞

2𝑘𝐵𝑇2𝑡
 

 

Helfand moment for heat conduction: 

𝐺𝐿 𝑡 =  𝑥𝑖 𝐸𝑖 − 𝐸𝑖 𝑒𝑞

𝑖

=  𝑥ℎ 𝑥, 𝑡 𝑑𝑥 ;  
𝑑𝐺𝐿

𝑑𝑡
= 𝐽𝐿 =  𝑗 𝑥, 𝑡 𝑑𝑥 

 

 

 

The Helfand Moment 

 Helfand Phys. Rev. 119, 1 (1960) 

 Viscardy, Servantie and Gaspard, J. Chem. Phys. 126, 184513 (2009) 

 Gaspard and Gilbert, J. Stat. Mech. P11021 (2008) 
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𝜅 =
1

𝑘𝐵𝑇2
 𝐶𝐽𝐽 𝑡′ 𝑑𝑡′

∞

0

 



 

 It can be shown that 

 

𝑑2 Δ𝒢2 𝑡 𝑒𝑞

𝑑𝑡2
= 2𝐶𝐽𝐽 𝑡 = 𝑘𝐵𝑇2𝑐

𝑑2 Δ𝑥2 𝑡 𝐸

𝑑𝑡2
 

 

 Initial condition: 
𝑑 Δ𝒢2 𝑡

𝑒𝑞

𝑑𝑡
 
𝑡=0

= 0 ; Δ𝒢2 𝑡 = 0 𝑒𝑞=0     (always positive) 

 

 

 

The Helfand Moment 

 Helfand Phys. Rev. 119, 1 (1960) 

 Viscardy, Servantie and Gaspard, J. Chem. Phys. 126, 184513 (2009) 

 Gaspard and Gilbert, J. Stat. Mech. P11021 (2008) 
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Time-local Helfand Relation

 Comparing with the ordinary Helfand relation ߢ ൌ ଵ
ଶಳ்మ

lim
௧→ஶ

࣡మ ௧ 

௧
for 

normal transport, here we obtain a time-local version

 i.e. 
ௗ ௫మ ௧ ಶ

ௗ௧
instead of   

௫మ ௧ ಶ
௧

 Is in suitable form to establish the connection between (anomalous) heat diffusion 
and (anomalous) heat conduction

23

ௗమ ௫మ ௧ ಶ
ௗ௧మ

ଶ ௧
ಳ்మ

, 

݀ Δݔଶ ݐ ா
ݐ݀ อ

௧ୀ

ൌ 0

ଶ
ா


ଶ 

ᇱ ᇱ
௧




ଶ

ଶ




Normal Energy Transport 
 

 

 

 

Green-Kubo Formula 

 

𝜅 =
𝑐

2
lim
𝑡→∞

𝑑 Δ𝑥2 𝑡 𝐸

𝑑𝑡
= 𝑐𝐷𝐸  

thermal conductivity= volumetric heat capacity × thermal diffusivity 

 

Do not require Δ𝑥2 𝑡 𝐸 = 2𝐷𝐸𝑡 

Do not require heat equation,  

do not require local relation between 𝑗 and 𝛻𝑇 

 

 

𝜅 =
1

𝑘𝐵𝑇2  𝐶𝐽𝐽 𝑡′ 𝑑𝑡′
∞

0

 

lim
𝑡→∞

Δ𝑥2 𝑡 𝐸

𝑡
= 2𝐷𝐸     or     Δ𝑥2 𝑡 𝐸 ∼ 2𝐷𝐸𝑡 

25 

𝑑2 Δ𝑥2 𝑡
𝐸

𝑑𝑡2  =
2𝐶𝐽𝐽 𝑡

𝑘𝐵𝑇2𝑐
 



Superdiffusive Energy Transport 

 

 

𝜅 =
1

𝑘𝐵𝑇2
lim
𝑡→∞

 𝐶𝐽𝐽 𝑡′ 𝑑𝑡′
𝑡

0

=
𝑐

2
lim
𝑡→∞

𝑑 Δ𝑥2 𝑡 𝐸

𝑑𝑡
     diverges! 

If one is interested in the length dependence of thermal conductivity, the 

usual procedure is then to put a cut-off time 𝑡 ∼ 𝐿/𝑣𝑠 in the upper limit of 

the integral and consider a length-dependent thermal conductivity. 

 

𝜅 𝐿 ∼
1

𝑘𝐵𝑇2
 𝐶𝐽𝐽 𝑡′ 𝑑𝑡′

𝐿
𝑣𝑠

0

=
𝑐

2

𝑑 Δ𝑥2 𝑡 𝐸

𝑑𝑡
 
𝑡=

𝐿
𝑣𝑠

∼   𝐿  𝛽−1 

 

𝜅 𝐿 ∼ 𝐿𝛼 ,  𝛼 = 𝛽 − 1 

Δ𝑥2 𝑡 𝐸 ∼ 𝑡𝛽  (1 < 𝛽 ≤ 2) 

 Lepri, Livi and Politi, Phys. Rep. 377, 1 (2003) 
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𝑑2 Δ𝑥2 𝑡
𝐸

𝑑𝑡2  =
2𝐶𝐽𝐽 𝑡

𝑘𝐵𝑇2𝑐
 

 Dhar, Adv. Phys. 57. 457 (2008) 



Subdiffusive Energy Diffusion 

 

 

 

𝜅 =
1

𝑘𝐵𝑇2
lim
𝑡→∞

 𝐶𝐽𝐽 𝑡′ 𝑑𝑡′
𝑡

0

=
𝑐

2
lim
𝑡→∞

𝑑 Δ𝑥2 𝑡 𝐸

𝑑𝑡
= 0, thermal insulator 

 

Following the same reasoning used in the study of heat conduction in open systems 

with Markovian-heat baths, but with the spectral densities for the heat baths suitably 

tailored in order to yield such subdiffusive heat diffusion, we still use the cut-off 

time to get 

 

𝜅 𝐿 ∼ 𝐿𝛼 ,   𝛼 = 𝛽 − 1 

Δ𝑥2 𝑡 𝐸 ∼ 𝑡𝛽  (0 < 𝛽 < 1) 
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𝑑2 Δ𝑥2 𝑡
𝐸

𝑑𝑡2  =
2𝐶𝐽𝐽 𝑡

𝑘𝐵𝑇2𝑐
 



Take Home Messages I

we studied (anomalous) heat diffusion in absence of ergodicity breaking.

The excess energy distribution in nonequilibrium energy diffusion is a 
convolution of the Green function and the initial energy profile. (similar to 
the solution of heat equation) The Green function is given by the canonical 
energy-energy correlation function.

28



Take Home Messages I continued

29

)> Given the premise that anomalous stationary heat flux follows anomalous 
length dependent heat conductance K(L) ""' .La, then MSD ""'tf3 implies 
a = {3- 1. 

~ The dynamical relations we derived applies for all times t , therefore it can 
be invoked as well for those intermediate cases where anomalous, length
dependent heat conductivity occurs over a finite size. 
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effective viscosity in the spirit defined above. In contrast, a Fourier-like behavior may become possible if the 

inherent momentum dynamics is more fluid-like, consequently possessing a finite effective momentum 

diffusivity. An appealing conjecture therefore is that it is the physics of momentum diffusion which rules 

whether heat transport occurs normal or anomalous. In short, we next test with different models the following 

hypothesis: 

(i) Heat transport in nonlinear ID momentum-conserving Hamiltonian lattice systems occurs normal whenever 

the spread of the profile of the excess momentum density, upon subtracting a possibly present leading ballistic 

part, is normal. 

(ii) The corollary being that heat transport occurs anomalous whenever this so adjusted, subleading momentum 

excess density spreads superdiffusive. 

If this hypothesis holds true it is expected to hold vice versa, i.e., with heat/momentum substituted by 

momentum/energy. 
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Mean Free Paths (MFP)
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Phonon concept

4

the phonon is one of the most important concepts in solid state physics.

eigenstates of lattice vibration, harmonic chain, superposition,
wavelength, frequency, dispersion relation …

phonon-phonon interaction, relaxation time, mean free path …

sound, elastic phonon, acoustic phonons, optical phonons,…

Kinetic theory of heat conduction: Peierls-Boltzmann:



Open problems

8

Anharmonic lattices: Equations of motion cannot be decoupled into 
eigenmodes

Then: what is the “meaning” of a phonon ?!! 

dispersion relation ?

A priori: a phonon mean free path and/or a phonon relaxation time 
cannot be justified for anharmonic lattices. which “effective phonon”
makes sense?

Is a single-mode relaxation time approximation feasible yielding 
MFP/relaxation time ?

Anomalous heat conductivity:  a MFP seemingly nonexisting/divergent
All these can be solved only if we can really “see” phonons



Tuning fork experiment

11

Identify phonon by observing the propagating sound in the lattices
Is it wave-like? (wavelength, frequency … )
Does it decay exponentially? (mean free path)



Triggering anharmonic phonons in 
anharmonic lattices

19

Nonlinear equations of motion for anharmonic lattices 
are not analytically solvable. A different approach is 
needed.
Nonlinear media may generate a multi-frequency 
response for a single-frequency input. However, if the 
driving force is small, we are in the linear response 
regime the output will still be at the input single-
frequency only.



Classical Linear Response Result

20

Linear Response of the 
particle velocities



Expectations for anharmonic phonons

21

);;> cpn is linearly dependent on n: <Pn = -k n + ¢ 0 
so that a wavenumber can be defmed for the excitation. The 
relation between k and w give the dispersion relation 

I 

);;> IXnl exponentially d.ecays with n: lxnl--e-k n 

so that an MFP l can be defined l = 1/ k' 
l is frequency dependent 
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Models

23

FPU-{3 Mo,del V(x) = 
1 x 2 + 1 x 4 U(x) = 0 

. 2 4 

FPU-ap Model V(x) = 
1 

x 2 + 1 
x 3 + 1 

x 4 U(x) = 0 
2 3 4 

Phi4 Model V(x) = 
1 

x 2 U(x) = 
1 

x4 
2 4 



Numerical details

24

1 . The v-v correlation 
(vn(t)v1 (0)) is 
calculated for 
n = 1,2, · · · , N and 
t = 0, h, 2h, · · ·, tm 

N = 2.048 
h = 0.02. 

tm = 655.36 

2. Fourier transform to 
obtain Xn(w) 

0.05 

0.00 

;:::::::: 0 .05 
0 

..;:::._, 

Velocity Correlation Function 
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/J~~~ 
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I 
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t 

For FPU-P model at T=0.2. 

100 

Other models display sim ilar oscillatory behavior 
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Dashed lines:
Effective phonon theory

N. Li, EPL 75, 49 (2006) 



28

A. Dhar, Adv Phys 57 457 (2008)
A. Pereverzev Phys. Rev. E 68 056124 (2003)
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0 200 400 600 200 400 600 
n n 

~ Perfect linear dependence of <Pn on n ~ anharmonic phonon can be defined 
~ non-exponential decay of lxnl -7 MFP can not be well defined!! 
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H. Spohn, arXiv 1305.6412 (2012)
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f1
00 

dn Xn(w) . / X~ (w) 

3 
10 o T= 02 

~ · T= 1 
\ T= 10 



Phi4 model 

32 

Very similar to the FPU-𝛽 model: both the 

anhamronic phonon and MFP can be defined. 

Dashed line: effective phonon theory 



Take home message II:

33

);;>A driving force metho,d has been introduced to trigger waves in nonlinear 
lattices, which can assist to study the properties of (anharmonic) phonons 
in nonlinear lattices 

);;>For a harmonic lattice the generated wave possesses the intrinsic phonon 
properties 

~Linear response formula for the excited wave in anharmonic are derived, 
which enables fast calculation of the excited motions 

~Numerical simulations have been performed on the FPU-{3, FPU
a{3 lattice and Phi4 lattice. 



A QUESTION ? 
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